
See page for author [Public domain], via Wikimedia Commons
It was conjectured by Wilson and published in a book by Waring in 1770. It was proved by Lagrange in 1773. A manuscript of 1682 indicates that Leibniz was aware of the result.
If and only if p is a prime number, then
\displaystyle \frac {(p-1)! + 1}{p}
is a natural number.
In modular arithmetic, we write Wilson’s Theorem as the congruence
\bbox[10px,border:2px solid black]{(p-1)!\equiv -1\pmod p}
The converse of Wilson’s Theorem is also true.
If n \gt 1 is a natural number and (n-1)!\equiv -1\pmod n, then n is prime.
For a composite number, n, (n-1)!\equiv 0\pmod n except when n = 4.
For small values we have
\begin{array}{r|r|r|r} n & (n-1)! & (n-1)!\pmod n & Prime?\\ \hline 2 & 1 & 1 & T\\ 3 & 2 & 2 & T\\ 4 & 6 & 2 & F\\ 5 & 24 & 4 & T\\ 6 & 120 & 0 & F\\ 7 & 720 & 6 & T\\ 8 & 5040 & 0 & F\\ 9 & 40320 & 0 & F\\ 10 & 362880 & 0 & F\\ 11 & 3628800 & 10 & T \end{array}
For example :
7 is prime.
(7-1)! = 6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720
Using
\displaystyle \frac {(p-1)! +1}{p} = n
We have
\displaystyle \frac {6! + 1}{7} = \frac {721}{7} = 103
In modular arithmetic, we write this as the congruence
6! \equiv -1 \pmod 7
One way to explain how this works is by using modular multiplicative inverses.
Ordinary multiplication gives :
\begin {array}{c|cccccc} \times & 1 & 2 & 3 & 4 & 5 & 6\\ \hline 1 & 1 & 2 & 3 & 4 & 5 & 6\\ 2 & 2 & 4 & 6 & 8 & 10 & 12\\ 3 & 3 & 6 & 9 & 12 & 15 & 18\\ 4 & 4 & 8 & 12 & 16 & 20 & 24\\ 5 & 5 & 10 & 15 & 20 & 25 & 30\\ 6 & 6 & 12 & 18 & 24 & 30 & 36 \end{array}
Multiplication in modulo 7 gives the residues (remainders) :
\begin {array}{c|cccccc} \times & 1 & 2 & 3 & 4 & 5 & 6\\ \hline 1 & 1 & 2 & 3 & 4 & 5 & 6\\ 2 & 2 & 4 & 6 & 1 & 3 & 5\\ 3 & 3 & 6 & 2 & 5 & 1 & 4\\ 4 & 4 & 1 & 5 & 2 & 6 & 3\\ 5 & 5 & 3 & 1 & 6 & 4 & 2\\ 6 & 6 & 5 & 4 & 3 & 2 & 1 \end{array}
By inspection of the above table, we see that 2 and 4 and 3 and 5 are modular multiplicative inverses of each other since 1 is the multiplicative identity. 1 and 6 are both self-inverse.
Thus, we can write
6! \equiv 1 \times 1 \times 1 \times 1 \times 1 \times 6 \pmod 7 \equiv 1 \times 6 \pmod 7 \equiv -1 \pmod 7
© OldTrout 2019