The Möbius Function

The Möbius function is denoted by \mu(n), where \mu is the Greek letter mu.

Depending on the factorisation of n, the function takes the values \{-1, 0, 1\}.

\mu(n) = \begin{cases} 1, & \text{if}\, n = 1\\ 0, & \text{if}\, p^2 | n\\ (-1)^k, & \text{if}\, n \,\text{is the product of}\, k \,\text{distinct primes} \end{cases}

The last says that if k is even, then \mu(n) = 1 and if k is odd, then \mu(n) = -1.

Consider the numbers 6, 7 and 8.

6 = 2\cdot 3 so \mu(6) = 1

7 =  prime so \mu(7) = -1

8 = 2^3 so \mu(8) = 0 since 2^2 divides 8

OldTrout, Going Postal
The first 50 values ​​of the function μ (n)
MöbiusMu.PNG: User:Tosderivative work: Gregors (talk) 22:04, 8 March 2011 (UTC) [Public domain]
Thus the Möbius function is a multiplicative function :

\mu(ab) = \mu(a)\mu(b),

where gcd(a, b) = 1.

The sum of the Möbius function over all the positive divisors of n (including 1 and itself) is zero except when n = 1.

\displaystyle \sum_{d|n} \mu (d) = \begin{cases} 1, & \text{if} \, n = 1\\ 0, & \text{if} \, n \gt 1 \end{cases}

For example, the divisors of 6 are 1, 2, 3 and 6 so 1 -1 -1 + 1 = 0.

The Möbius function is connected to Euler’s totient function by Möbius inversion :

Let f and g be arithmetic (multiplicative) functions such that

\displaystyle f(n) = \sum_{d|n} g(d) for all n, then

\displaystyle g(n) = \sum_{d|n} \mu(d) \, \, f\left(\frac nd\right)

From the Gaussian identity of Euler’s totient function we have :

\displaystyle f(n) = \sum_{d|n}\varphi(d)

When n = 6, \, \, f(6) = 1 + 1 + 2 + 2 = 6.

So, by the inversion theorem :

\displaystyle g(n) =  \varphi(n) = \sum_{d|n} \mu(d) \frac nd

When n = 6 then

\displaystyle \varphi(6)  = \sum_{d|6} \mu(d) \frac 6d

Thus

\displaystyle \varphi(6) = \frac 61 \, – \frac 62 \, – \frac 63 + \frac 66 = 6 \, – 3 \, – 2 + 1 = 2

Euler’s Totient Function
 

© OldTrout 2018